

Challenges Drive Innovation™



# Using Layer 2 Ethernet For High-Throughput, Real-Time Applications

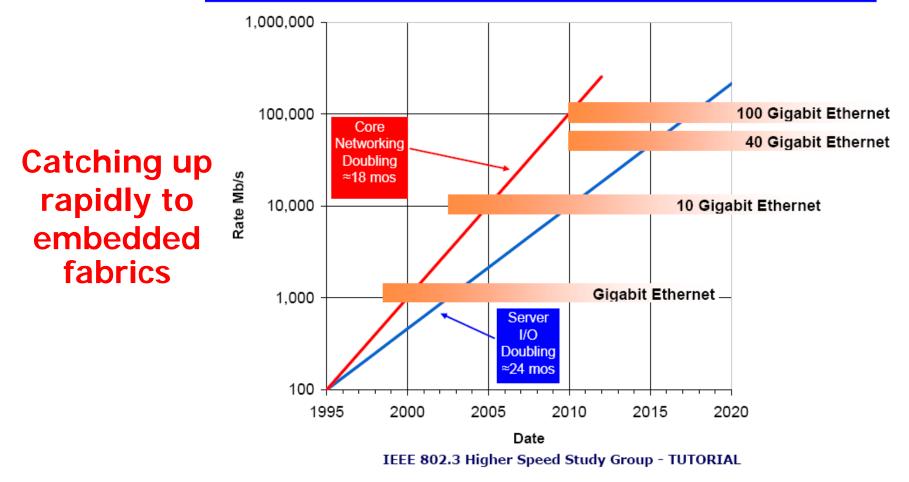
High-Performance Embedded Computing (HPEC) Conference – September 24, 2008

Robert Blau and Dr. Ian Dunn Mercury Computer Systems, Inc.

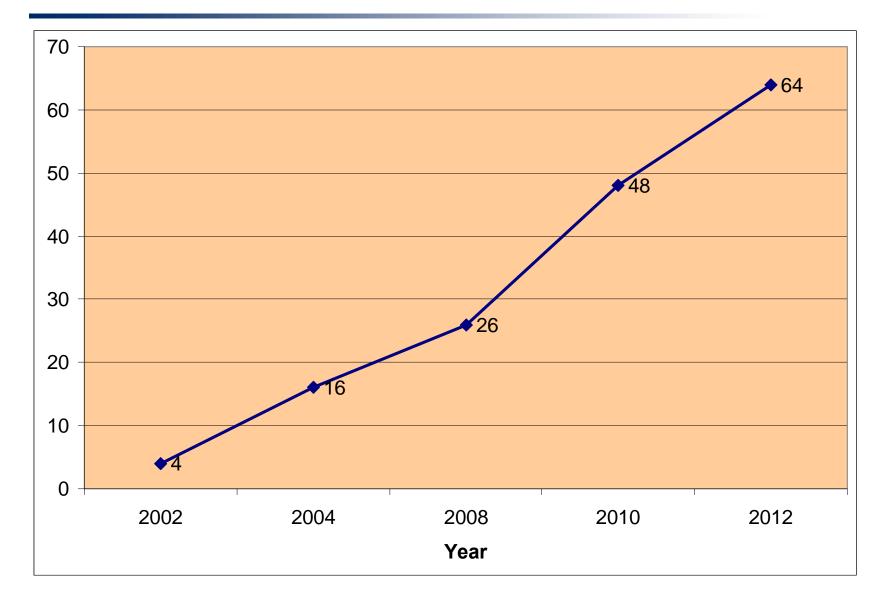
© 2008 Mercury Computer Systems, Inc.

www.mc.com

## Packets Over Ethernet (POET) Topics


- Ethernet Trends
- POET Overview
- POET Rationale
- POET Results
- Conclusion

# **Problem/Opportunity Statement**


| Never bet against<br>Ethernet                       | <ul> <li>Ethernet's ability to prevail over seemingly superior technologies has made this into a networking axiom</li> <li>Seamless interoperation at 1, 10, 40, &amp; 100 Gbps standards</li> <li>Location-agnostic operation – applications can reside wherever optimal, depending on performance, productivity, and life-cycle considerations</li> <li>Low cost of ownership</li> </ul> |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Ethernet is the catalyst behind                     | Corporations/individuals looking for highest<br>performance, most productive, and cost-efficient<br>compute platforms to help translate research into<br>value, deployed capabilities                                                                                                                                                                                                      |  |  |
| the growing<br>pervasiveness of<br>compute clusters | <ul> <li>Spawning new repositories of innovative software-based capabilities that rely on Ethernet as the communications substrate</li> <li>Clustering/networking will become dominant components of any good system engineering toolkit</li> </ul>                                                                                                                                        |  |  |
| Ethernet is the<br>antithesis of real<br>time       | <ul> <li>Unbounded latency, power consumption</li> <li>Industry-wide reliance on inefficient protocols in both<br/>software and hardware from a real-time perspective</li> </ul>                                                                                                                                                                                                           |  |  |

# No Longer an Inferior Technology

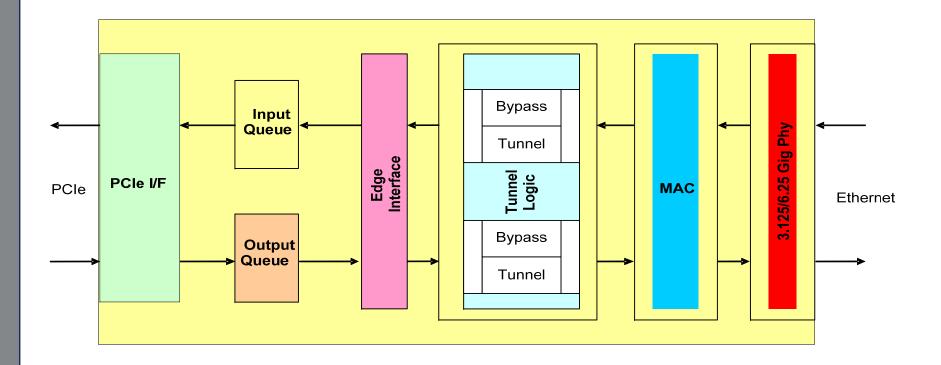
#### 40GbE and 100GbE: Computing and Networking



#### **Impressive 10GbE Switch ASIC Port Counts**



## POET


#### Layer 2 Solutions Make Sense

- Ride the Ethernet technology curve
- ATAOE, FCOE, IBOE
- POET is Architected with Real-Time Requirements

#### • Simple Principles:

- Encapsulate an existing packet protocol using L2 frames
- Add H/W-based guaranteed delivery
- Add H/W-based traffic policing and shaping
  - Priorities
  - Flow control
  - Adaptive routing
  - Channel bonding

## **POET Internals**



## **TCP/IP Ethernet Format**

| 0  | Ethernet Preamble (PRE)               |                                                                        |      |                                   |
|----|---------------------------------------|------------------------------------------------------------------------|------|-----------------------------------|
| 4  | Ethernet Preamble (PRE)               |                                                                        |      | Ethernet Start<br>Delimiter (SFD) |
| 8  | Ethernet Destination MAC Address (DA) |                                                                        |      |                                   |
| 12 | Ethernet Destination MAC Address (DA) | Ethernet Destination MAC Address (DA) Ethernet Source MAC Address (SA) |      |                                   |
| 16 | Ethernet Source MAC Address (SA)      |                                                                        |      |                                   |
| 20 | Ethernet Type –VLAN = 0x8100          | PRI                                                                    | 0    | VLAN ID (VID)                     |
| 24 | Ethernet Type (IP) IP Header          |                                                                        | ader |                                   |
| 28 | IP Header                             |                                                                        |      |                                   |
| 32 | IP Header                             |                                                                        |      |                                   |
| 36 | IP Header                             |                                                                        |      |                                   |
| 40 | IP Header                             |                                                                        |      |                                   |
| 44 | IP Header TCP Header                  |                                                                        | er   |                                   |
| 48 | TCP Header                            |                                                                        |      |                                   |
| 52 | TCP Header                            |                                                                        |      |                                   |
| 56 | TCP Header                            |                                                                        |      |                                   |
| 60 | TCP Header                            |                                                                        |      |                                   |
| 64 | TCP Header                            | Data                                                                   |      |                                   |
|    | Data                                  |                                                                        |      |                                   |
| N  | Ethernet Frame CRC                    |                                                                        |      |                                   |

### **POET Format**

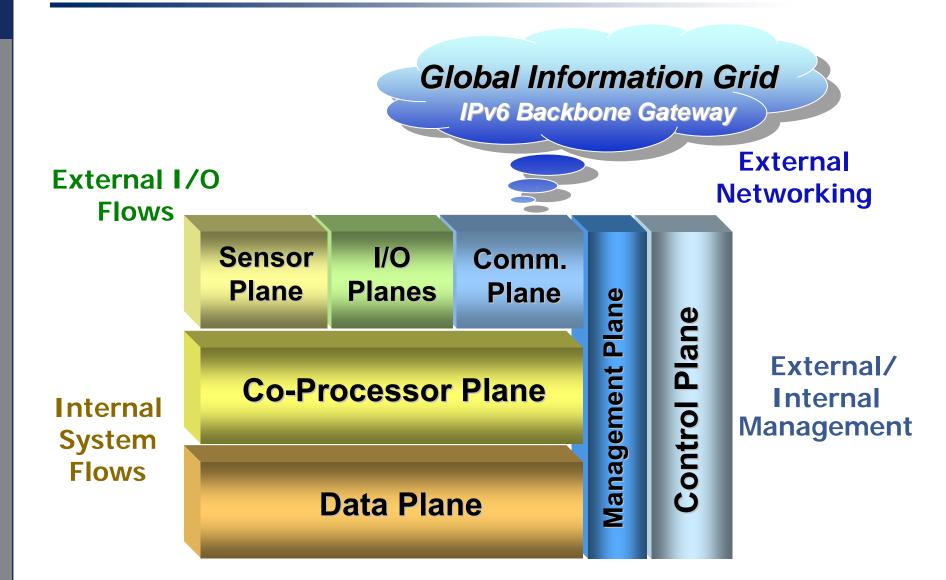
Example of grouped packets encapsulated in the layer 2 Ethernet format – a small write packet and a read request in the same number of bytes as a TCP/IP header

| 0  | Ethernet Preamble (PRE)                                                |                  |  |     |                                   |  |
|----|------------------------------------------------------------------------|------------------|--|-----|-----------------------------------|--|
| 4  | Ethernet Preamble (PRE)                                                |                  |  |     | Ethernet Start<br>Delimiter (SFD) |  |
| 8  | Ethernet Destination MAC Address (DA)                                  |                  |  |     |                                   |  |
| 12 | Ethernet Destination MAC Address (DA) Ethernet Source MAC Address (SA) |                  |  |     |                                   |  |
| 16 | Ethernet Source MAC Address (SA)                                       |                  |  |     |                                   |  |
| 20 | Ethernet Type –VLAN = 0x8100                                           | PRI 0            |  |     | VLAN ID (VID)                     |  |
| 24 | Ethernet Type (POET)                                                   | Payload Type Ver |  | Ver | SeqID                             |  |
| 28 | Flow Control Header CRC                                                |                  |  |     |                                   |  |
| 32 | Packet 0 Write Header                                                  |                  |  |     |                                   |  |
| 36 | Packet 0 Header                                                        |                  |  |     |                                   |  |
| 40 | Packet 0 Data                                                          |                  |  |     |                                   |  |
| 44 | Packet 0 Data                                                          |                  |  |     |                                   |  |
| 48 | Packet 0 Data                                                          |                  |  |     |                                   |  |
| 52 | Packet 0 CRC                                                           |                  |  |     |                                   |  |
| 56 | Packet 1 Read Header                                                   |                  |  |     |                                   |  |
| 60 | Packet 1 Header (No Data)                                              |                  |  |     |                                   |  |
| 64 | Ethernet Frame CRC                                                     |                  |  |     |                                   |  |

# Why Use Layer 2 Ethernet for Transport?

- High Performance
  - Layer 2 avoids TCP/IP overhead
  - Latency and throughput very competitive with embedded fabrics
- Complete Functionality
  - Ability to provide all necessary functions and services
  - Scalable to 64K + nodes
  - Multicast capability using VLANs
- Robust
  - Lossless transport layered on top in hardware
  - No TCP/IP (S/W Stack) overhead
  - Hardware-based proactive traffic policing and shaping to deal with contention and priority
- Compatible with Regular Networking Protocols

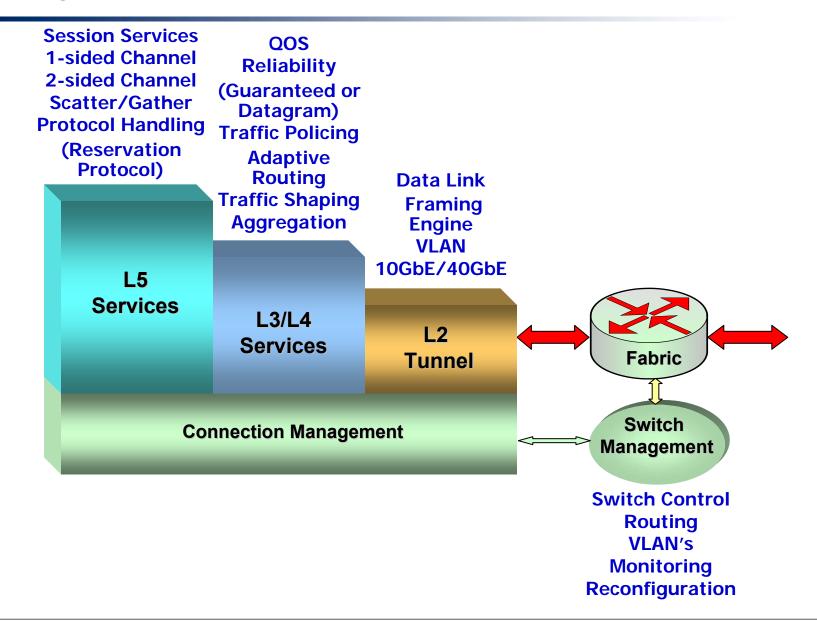
# **Key Requirements**


- Logical Layer Semantics
  - Memory ops: writes, reads, atomic ops
  - Messaging ops: mailbox, doorbell
- Performance
  - 32+ Gbps point-to-point
  - Lightweight protocol
  - Channel bonding capability
  - Rapidly improving switch ASIC data rates
- Latency
  - I us end-to-end
  - Minimal S/W involvement
  - Cut-through operation
  - Rapidly improving switch ASIC latencies
    - Fewer hops as # switch ports increase
    - Faster switch latencies

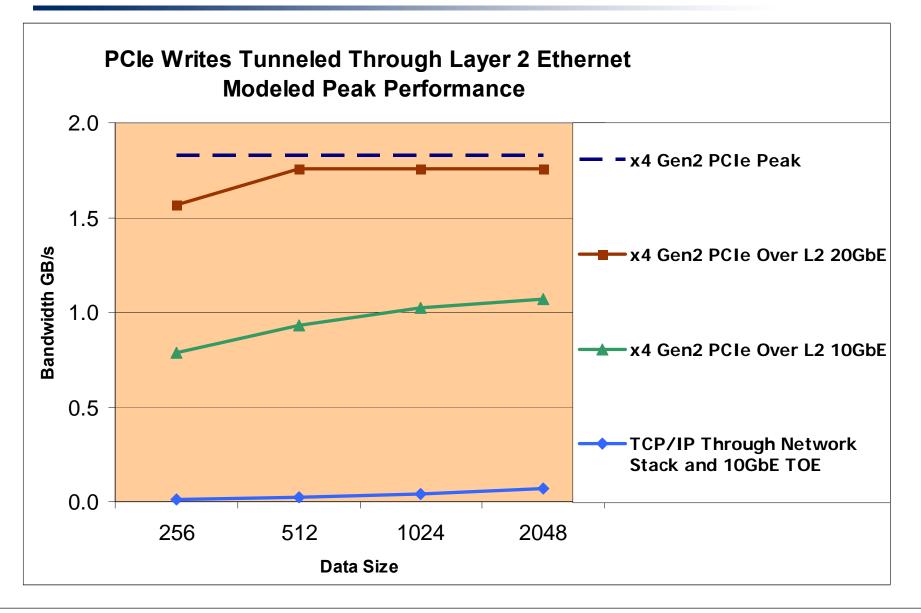
## **Key Interconnect Features**

#### Reliability

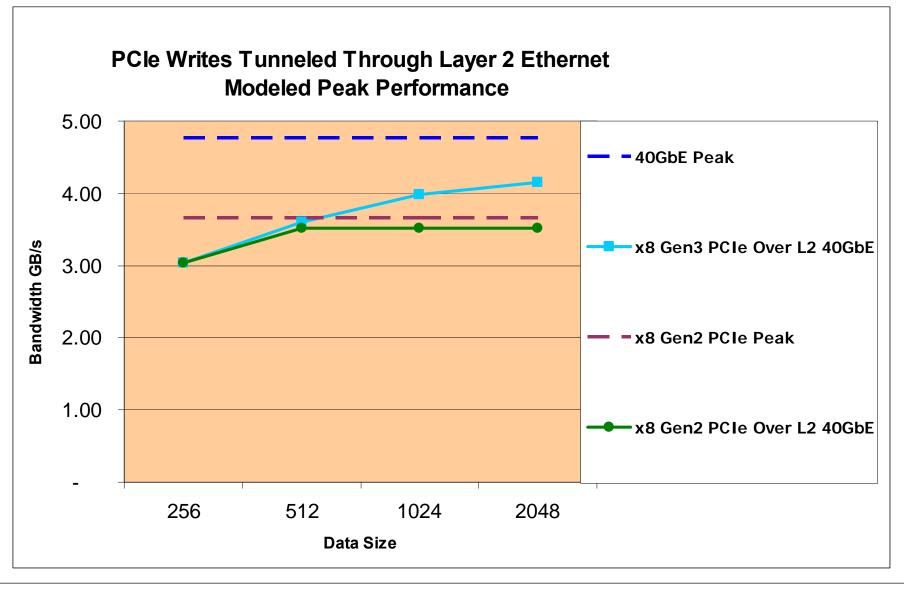
- Guaranteed delivery
- Datagram (send and forget)
- Contention Management
  - Per-flow bandwidth control
  - Adaptive routing capability
- Security
  - DestinationID and address translation for memory region protection
  - Switch-based ACL, DOS features
- Interoperability
  - POET, TCP/IP, UDP, FCoE...


## **Mercury's Communications Model**



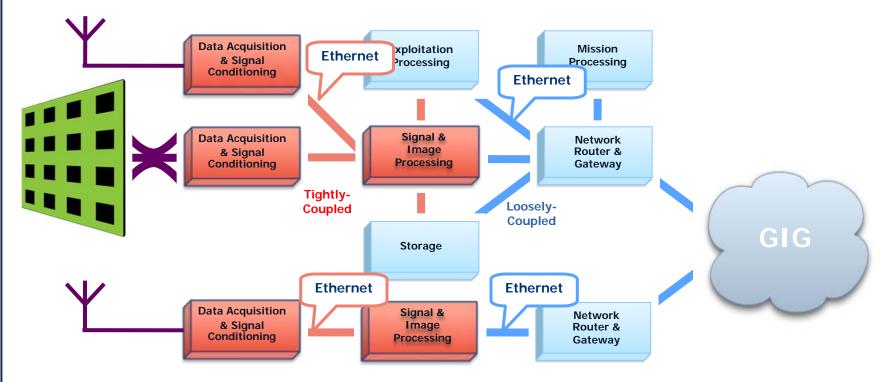

## **Nominal Prioritization Scheme**

| Priority | Traffic Class             | Comments                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|----------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 3        | Sensor I/O,<br>Management | Acquires, conditions, and forwards resulting digitized data<br>to data plane for segmentation, re-assembly, processing,<br>and/or storage. Failure to service this communications<br>plane properly adversely affects all downstream processing.                                                          |  |  |  |  |
| 2        | Data,<br>Co-Processing    | Transforms digitized data into information symbols and<br>exploits those symbols to create information.<br>As an adjunct to the data plane, encompasses data<br>communication and processing used in the acceleration of<br>data plane functions, as such it must have an elevated<br>priority over data. |  |  |  |  |
| 1        | Control                   | Performs initialization, configuration, and synchronization<br>of sensor processing components in data plane, including<br>mapping and/or routing of data through sensor, data, and<br>co-processing planes.                                                                                              |  |  |  |  |
| 0 (low)  | Communications            | Provides external data communication, which includes, but<br>is not limited to, network backhaul, wireless interfaces, and<br>free-space optical transmission schemes. Control traffic<br>associated with external interfaces is assumed to be part of<br>control plane in this model.                    |  |  |  |  |


## **Layered Interconnect Architecture**

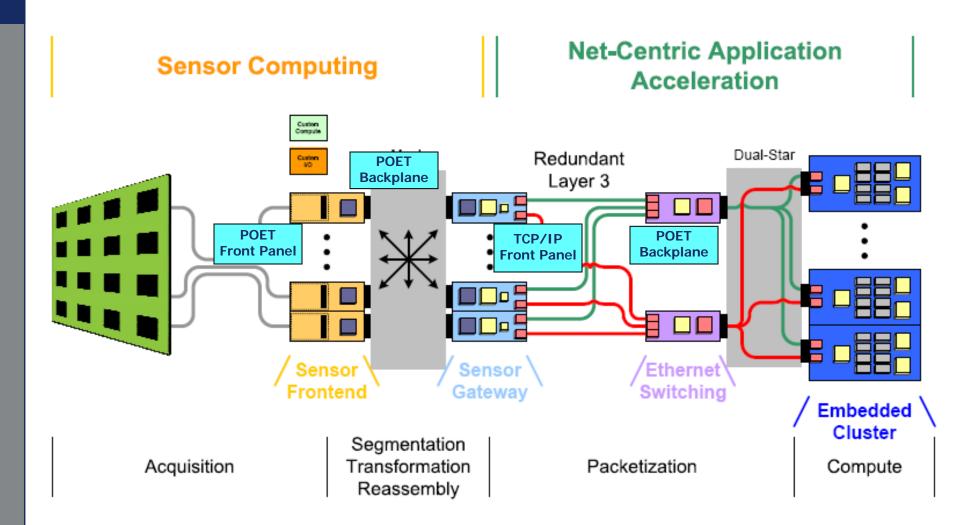


## **POET 10GbE Throughput**




## **POET 40GbE Throughput**




## Summary: A New Level of Convergence

Bringing together signal and image processing, information exploitation, and information management



- Integrated, optimized for low latency, high throughput, and SWaP
- Designed to deliver an "embedded" Quality-of-Service that supports convergence of processing and net-centric capabilities

## **Typical System Architecture**





Challenges Drive Innovation™



## **Questions?**

© 2008 Mercury Computer Systems, Inc.

www.mc.com